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Profiles of gasdynamic parameters in self-similar blast waves, taking into account the 
influence of conduction and radiation fluxes due to high temperatures attained at the 
centre, are determined. In the blast-wave equations these fluxes are expressed in 
terms of the Fourier law for heat conduction and a differential expression for radiative 
transport in a semi-grey gas model. Various boundary conditions are considered in 
order to account for different ways in which blast waves are initiated and driven. 
Similarity requirements are implemented in the solution by compatible functional 
forms of gas conductivity and absorptivity, &s well &s the opacity of the shock front. 
This formulation yields a two-point boundary-value problem, which is then trans- 
formed into an initial-value problem in order to facilitate the integration. As a parti- 
cular example, a detailed solution for the constant-energy case is obtained, covering 
the whole range of relative heat-transfer effects expressed in terms of radiative to 
gasdynamic energy fluxes, from thk adiabatic flow field, on one extreme, to the 
isothermal, on the other. 

1. Introduction 
An analysis of blast waves taking into account internal heat transfer was presented 

first by Sedov (1959). Effects of conduction only were considered and the functional 
form of thermal conductivity was prescribed by dimensional considerations to satisfy 
the similarity condition. Using this form, Korobeinikov, Melinkova & Ryazanov 
(1 96 1) obtained solutions for a constant-energy as well as for an isothermal blast wave. 

Marshak (1958) used the radiation-diffusion approximation to solve both cases of 
constant-density and constant-pressure fields without invoking conditions of self- 
similarity. The first of these includes the case of a thermal wave, a situation that exists 
a t  initial stages of explosion when the gas motion is negligible, while the second shows 
the effect of radiation on the inner part of the gasdynamic field where pressure is almost 
constant. A finite-difference solution for the problem of an expanding high-pressure, 
high-temperature sphere where radiation is significant was obtained by Brode (1969). 
NiCwtro (1970) and Helliwell (1969) treated the problems of radiating walls, either 
stationary or moving, generating shocks at the head of self-similar flow fields. Bowen t 
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Feay (1970) used the method of matched asymptotic expansions to solve the problem 
of strong explosion for small values of the conduction parameter. 

The non-self-similar problem of a blast wave associated with diffusive radiation was 
analysed by Kim et al. (1975), using matched expansions, upon the assumption that 
the radiation effects are significant only in a boundary layer around the centre of 
explosion. A similar approach was also used by Kamel et al. (1977) to find self-similar 
solutions. 

The purpose of this study was to appraise explicitly the effects of internal heat 
transfer in self-similar blast waves, with particular attention given to the various modes 
in which the radiative energy-transport processes can occur. The medium was assumed 
to be an inviscid, perfect gas, so that the sole effect under study was that of conduction 
and radiation fluxes driven by tEe high temperatures prevailing at the centre. The 
solution to the problem formulated in this manner presents thus a contribution to our 
systematic parametric investigation of the fundamental properties of blast waves 
(Oppenheim et al. 1971, 1972). 

The conduction flux is taken to be proportional to the temperature gradient while 
the radiation flux is related to both the temperature and its gradient through the 
differential approximation of an appropriate transport equation. This approximation 
approaches asymptotically on one side the emission radiation limit and on the other 
the diffusion radiation limit as the optical thickness of the gas changes from zero to 
infinity. A semi-gray gas model is also adopted for the optical properties of the medium, 
where two frequency-averaged coefficients of absorption are used, tending toward the 
Planck and Rosseland coefficients of absorption in the optically thin and thick radiation 
limits, respectively. The gas is assumed to be a t  a local-thermodynamic-equilibrium 
state dominated by collisions. 

In  order to comply with similarity conditions, the coefficients of absorption and the 
conductivity of the gas have to vary in a compatible way with temperature and 
density. This variation is found to be related to the rate a t  which the bounding front 
of the field decays, which, in turn, depends on how energy is deposited in the medium. 
In addition, the opacity of the front itself is determined by the variation of the total 
energy of the flow field. Thus, different cases of energy deposition are considered and 
the parameters of the problem are adjusted accordingly. 

When conduction is taken into account the resulting two-point boundary-value 
problem, consisting of six first-order ordinary differential equations, is reduced t o  a 
more tractable initial-value problem by a transformation of variables and an adjust- 
ment of the boundary conditions. In  the case of purely radiative energy transfer, devoid 
of any effects of conduction, this method is not applicable and the solutions are 
obtained by a numerical, iterative, implicit shooting technique. A t  the same time, 
various modes of energy deposition are considered, such as constant-energy waves, 
energy irradiated upon the front, or energy radiated from an inner surface. 

Results are obtained for the constant-energy waves over a complete range of heat- 
transfer effects, from the adiabatic to the isothermal limit, according to the specific 
nature of the dominant mechanism of heat transfer and its relative magnitude. 
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2. Formulation 

following conservation equations : 
Blast waves considered as one-dimensional unsteady flow fields are governed by the 

a a - (pr j )  +% @rfu) = 0, at 

where p is density, p is pressure, u is flow velocity, e is internal energy, and q is the 
energy flux; the latter can be decomposed into qc + qr, where qc = conduction heat flux 
and qr = radiative heat flux. r and t are respectively the space and time co-ordinates, 
and 

0 for plane symmetry, L 2 for point symmetry. 

(1 a) j = 1 for linesymmetry, 

According to Fourier’s law of heat conduction 

aT 
q c  = -k- 

ar 9 

where k is the gas thermal conductivity and T is absolute temperature. Assuming a 
semi-grey gas (Traugott 1966; Finkleman & Chien 1968) the differential approxi- 
mation of the radiation-transport equation can be written in the following form for 
general one-dimensional flow : 

where a, is the Stefan-Boltzmann constant. In the above 

is the Planck frequency-averaged absorptivity, where v is frequency, a, is the absorp- 
tivity a t  frequency v, B, is the frequency-dependent radiation flux described by 
Planck’s function, and 

is the total radiation flux of a black body. The other coefficient of absorption that 
appears in (3) is 

16 F L Y  117 
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where i, is the radiation intensity at frequency v and 

i = lOmivav.  

At high radiation intensity with small gradients % approaches the well-known 
Rosseland coefficient (cf. Finkleman & Chien 1968). 

The above system of equations is supplemented with an equation of state and three 
constitutive relations for the transport properties. We assume a perfect-gas behaviour 
of the medium, so that 

1 P  p = p R T ,  e = - -  
Y - 1 P  

(4) 

(y  is the specific heat ratio and R is the gas constant) and power-law variation for k, 
up and %, according to which 

where the subscript 0 denotes a reference state. In  the above, the exponents are to be 
determined from gas-property data within the appropriate temperature range; if a 
self-similar solution is sought, they must also satisfy the similarity requirements. 

The physical nature of the flow field imposes boundary conditions, and moreover 
it provides also two integral relations expressing the principles of global conservation 
of mass and energy inside the field. 

At the blast-wave front one has the usual equations for conservation of mass, 
momentum, and energy: 

where subscript n denotes the state immediately behind the front, a denotes atmo- 
spheric conditions and W is the speed of the front itself. Also 

Qn = qn + qa,  ( 7 4  

where q n  is the heat flux transferred from the field to the front while qa specifies the 
net energy transported across the front. This latter quantity can be written as 

qa = QO-qS, (7b) 

where qo is the radiation flux received by the front from external sources and qs is the 
flux transmitted through the front to the surroundings. This latter is established 
according to the opacity of the front and depends on its relative velocity with respect 
to that of the thermal wave that usually accompanies high-temperature fields 
(Zel'dovich & Raizer 1967). 

The inner boundary of the flow field can be either the centre, i.e. T = 0, for which 

u = o ,  q c = q r = O  (8 a, b )  

or it can be an inner surface T = ri moving at a prescribed velocity ui. 
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Principles of global conservation of mass and energy are expressed in terms of the 
following integral relations: 

where E is the blast initiation energy of the field; qi is the energy deposited on the inner 
boundary ri of the field. 

3. Similarity transformation 

form. This is accompanied by the introduction of 

XE-, and 6 ~ -  or YE- 

The system of differential equations (1) and (3) is first expressed in non-dimensional 

where M = M ( t ) ,  (11) 
r rn 1 
rn r0 Ma' 

as independent variables. Here M denotes the normalized front velocity W/Wo, and 
ro a reference radius. Associated with that is the front trajectory expressed in terms 
of its decay parameter 

It represents an eigenvalue of the equations. Its value is obtained in the process of 
satisfying the energy integral (10). 

The.corresponding dependent variables (cf. Oppenheim et d. 1971) are 

h p / P a ,  g W2, f u / W ,  Q E q/pa W'. (13) 

The transformed system admits a self-similar solution if 8/86 = hy 81% = 0, i.e. if 
none of the dependent variables depend on 6, a condition satisfied either by letting 
A = 0 or y = 0. The latttter is the strong-shock limit or the cold-atmosphere approxi- 
mation associated with M = 00. At the same time, since A = h( t ) ,  for self-similarity h 
must be constant. Upon integration, (12) yields the velocity and the trajectory of the 
front in terms of M ,  5, and 7 = t/to, the non-dimensional time, as follows: 

Noting that for self-similar flow all the variables are functions of x only while ea = 0, 
the energy integral (10) can be expressed as follows: 

where 

16-2 
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Hence, using (14) one gets 
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where 

is the specific blast initiation energy. 
The similarity restrictions on both the value of h and the front opacity can be found 

by requiring (15) to be either independent of 6 or by setting its right-hand side equal 
to zero. Two cases are thus realized.' 

(a)  I f  Z + 0 then 

A = j+ 1, QL+4Qi = 0. ( l fhb)  

The above implies that, if a blast wave is generated by an instantaneous deposition 
of energy, its bounding front must be opaque or its net exchange of energy with the 
surroundings must be zero in order to satisfy the energy-conservation requirement 
for self-similarity . 

(b) If 2 = 0, one has 
Qa+dQi 

J *  
h = j + l -  

This is the case of a blast wave driven by radiation supplied on either its front or on an 
inner boundary. It should be noted that in order to satisfy the similarity requirements 
the inner boundary should move according to a law similar to the front trajectory given 
by (14). The case of a stationary radiating wall can be recovered only for the plane case, 
for whichj = 0 and 

(17b) 
A =  I-- Q8 + &I 

J *  

In ( 5 )  the values of Be, BP and BR that satisfy the similarity condition can be 
obtained by requiring that Qc and Qr based respectively on (2) and (3) be independent 
of the front Mach number bf. Thus, substituting ( 5 )  into (2) and (3), and using the 
definitions (13) of the non-dimensional variables along with the equations of state (4), 
one obtains 

where 8 E yg/h, the non-dimensional temperature. It should be noted here that the 
reference density po is taken to be the same as the density pa of the surrounding 
atmosphere. 
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Setting the exponents of M equal to zero yields the following values for 8: 
1 1  

B e  = 2-x’  

Similar expressions for the B’s were obtained earlier by Sedov (1969), Elliot (1960), 
Helliwell ( 1969) and NiCastro ( 1970) by the use of dimensional analysis. The expressions 
given above show the effect of the process of energy exchange as well as that of 
geometry, reflected by the dependence of the on the decay parameter A.  

With the exponenta of M equal to zero, (18) and (19) reduce to 

(22) 
ae Qc = - re 8Sch8c- 
ax’ 

In the above, B, is the Boltzmann number, which shows the relative contribution of 
radiation in energy-transfer processes; the Bouguer number K is the characteristic 
optical thickness of the gas, which indicates the dominant mechanism of radiative 
energy transfer; Z, is the radiation mean free path. Similar dimensionlesa parameters 
were used by Goulard (1962) and Vincenti & Kruger (1976) to describe radiation 
effects in gasdynamics. 

The parameters re, I’, and I?, defined by (24) express the relative effects of con- 
duction, radiative emission and radiative diffusion, respectively, in comparison to 
energy transfer by convective processes. The value of K,  the optical thickness of the 
gas, determines the dominant mechan&m of radiative energy transfer. 

The boundary conditions at  the front, after transformation into non-dimensional 
variables and setting y = 0, as required by similarity, take the form 

4. The boundary-value problem 

Oppenheim et at?. (1971), can be now recast as follows: 
The transformed equations of motion, based on the general form presented by 

-=-( ah ax x(1-P) h (j+ 1)F+xg) ,  
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- h - (1  - F )  - x d6 - + (7 - 1)  (1 - F )  -- xdh) ( 2 7 d )  6 dx hdx ' 
dQ .Q -= 
dx 

dQr Qr - = -j-++pOfihapI, 
dx X 

In the constant-energy case, where h = j -t- 1,  (27d) can be integrated analytically to  
a closed expression for the energy flux : 

yx2 
Q = hx3[( e 

Y(Y - 1) x2 

This set of equations is subject to the following boundary conditions. 
(i) At x = 1 , (26 )  specify the boundary conditions at the front; in particular, noting 

that Fn = fn, (26u,b)  yield 

(ii) At x = 0, (8u) imposes the condition fi  = 0, while from ( 8 b )  it  follows that 
Qr = 0 and d6/dx = 0. Since F = f / x ,  then, a t  x = 0, F = df/dx. From the continuity 
equation, since dhldx = 0, one has dfldx = 0, thus 

Fi = 0. (30) 

The above formulation constitutes a two-point boundary-value problem in six first- 
order ordinary differential equations (27 ) .  The solution can be reduced significantly 
if the problem is transformed into an initial-value problem as described in f 6 .  

5. Transformation into initial-value problem 
If the equations are to be integrated numerically starting from x = 0, the values of 

hi and 81 must be known; however, one of the purposes of integrating these equations 
is to obtain these values. It was observed earlier by Elliot (1960), in a similar problem, 
that the equations will retain the forms given by (27) when the following normalized 
variables are introduced 

B 3 8/8i, K = h/hi, I = I / I i ,  0 = x/x*, Q = &I&*, (31) 

x* = e),  Q* = hix*3, Ii = Of, (32) 
i f x* ,  Q*, Ii are 
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and the I? are expressed as 

I r,* = h&-U ep-u rc, 
r;5 = hlup-1) e p + 8 ) r p ,  

r*, = hl(l+8~) 6 I- 2 BR)rR.  

i 

Initial conditions at 2 = x = 0 are 

Fi = 0, 81 = fit = 1. 

For an adiabatic inner boundary, Qr = Qc = 0 and Ii = 1. 
As a consequence of the above, 

dF dh do 
0 ;  

d I  - = 0, 

--- dz - ax - z = 

ax y ( y - l ) ( j + l ) ’  ax 

dQr 4rP 
ax j+ l ’  

while 
d&= A 

-=- 

The outer boundary is reached when the relation 

48 1 

(344  

( 3 4 4  

O n  = 7% Fn( 1 -Fn) ( 3 5 4  

is satisfied. At this point xi and hi can be evaluated, since, according to (26a), 

Equation (26c) can be used to determine &n while the value of &n is evaluated during 
the course of calculation. Equation (17) is then used to check the accuracy of the 
solution. 

6. Limitingcases 
When K approaches 0 or 00 the radiative-transfer equation (23) leads to two limiting 

cases. 
The fist limit, referred to as the Planck emission approximation, corresponds to 

K = 0, the optically thin gas. In this case r R  -+ 00, and by integrating (23) one obtains 

(36) 
d 

ax 
- = 4rpXwe4+f i ,  

which can be used to replace (27e, f ). 
The second limit, referred to as the Rosseland diffusion approximation, corresponds 

to K = 00, the optically thick gas. In this case rp + 00, the left-hand side of (23) is equal 
to zero, yielding an explicit expression for the radiation flux: 

(37) 
ae 

1 r h-aR@-jR - 
& r = - - r  R dx‘ 
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The characteristic features of physical situations where these limits apply can be 
deduced from the definition of K. In  the caae of a constant-energy wave an expression 
for r, can be obtained in the form (E/p ,  W;)l/(j+l). Thus, for low-density conditions and 
relatively small blast energies, r, is small and I ,  is large (cf. Thomas & Penner 1964); 
the value of K is, according to (26a), small, and the gas is radiatively ‘thin’. This is 
typical of laboratory conditions. On the other hand, for normal densities and large 
explosion energies, the characteristic dimension ro is large, the radiation mean free 
path I, is small and K is consequently large. This is the case of radiative diffusion 
typical of large-scale explosions. 

7. Singular case 
When conduction is neglected, rc = 0, and (27c) cannot be used to evaluate the 

temperature gradient. Also, since in this case Q = Qr (27d) and (27f) specify the mme 
quantity and become equivalent. To overcome these difficulties, a modified formulation 
is required. First, (23) is rearranged and split in the following way: 

where the quantity I defined above is different from I defined in (27e), and is the 
radiation intensity averaged with respect to both frequency and solid angle. Solving 
(27d) in terms of the temperature gradient and then using (39) to eliminate the flux 
gradient, we obtain - 

dB (y-1)Odh 
ax h ax y19 
-=---- 

where 

{A-?(?- I )  r,e(~p--l)h(bp--1)(4~-11)}. Y,=- 
e 

~ ( 1 - F )  

Finally, (27 a, b) and (40) are solved algebraically to find the derivatives of the gas- 
dynamic variables w 

where 
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The change in the boundary conditions is even more profound in this case since 
dO/dx + 0 and consequently F + 0 at the centre, z = 0. On the other hand, while 
Q = 0 must still be satisfied, this condition does not yield an explicit expression for the 
derivatives there. It should be noted that (41)-(43) do not include Q but only its 
derivative. (Even though Q = 0 at the centre is not imposed, all of the numerical 
solutions calculated are found to have this property.) Thus we are left with only the 
boundary conditionsf = 0 at x = 0 and (26 )  at z = 1. 

8. Results 
An explicit fourth-order Runge-Kutta integration scheme, with variable step to 

achieve the desired accuracy, was used to compute the solution of (27) ,  with conduction 
taken into account, for the two radiition limits, Planck and Rosseland. In  the former 
limit (27e )  is replaced by (36), and in the latter (27 f )  is replaced by ( 3 7 ) .  In  both cases 
the integration starts from the centre, z = 0, a saddle-point singularity, where all the 
gasdynamic variables and their derivatives, defining the centre line of the saddle, are 
given. When (34a) is satisfied, the front is located and the normalizing parameters are 
evaluated from (32 ) .  The first set of results presentedare for the cases of Planck radiative 
emission and Rosseland radiative diffwion, both associated with conduction, where 
Cc is always kept at 0.001, while I', and rR change from 0 to a, covering a full 
spectrum of cases from adiabatic to isothermal. Solutions have been obtained for a 
point explosion, i.e. for a constant-energy field with spherical symmetry. 

The medium was considered to behave as a perfect gas with the specific heat ratio 
y = 1.4, while the dependence of gas conductivity and absorptivity on density was 
expressed in terms of the following exponents (cf. (6)): Sc = 1, 6, = 8, = 2 .  This is 
representative of the case of high-temperature, low-density air (Thomas & Penner 
1964). 

Figures 1 (a), (b) present solutions in the phase plane for the case of Planck radiative 
emission and Rosseland radiative diffusion, respectively, where 2 = 8/z2. The PG, 
line is the Hugoniot curve for a radiation-driven shock wave, given by 

2 = y ( 1 - F ) P .  

As the energy deposited by radiation on the shock front increases owing to higher 
values of I?, the shock location shifts along this curve to the left. The displacement of 
the front on the P,, curve as I? increases is a result of the fact that higher radiation 
fluxes are transmitted to an opaque front. (The opacity of the front was determined 
from the similarity requirement that exists in the initial stages of propagation.) This 
situation resembles the case of a blast wave headed by a detonation front where energy 
is deposited due to chemical reaction. The isothermal field is represented by the 
dashed line. All the integral curves lie to the right of the curve 

D = Z - ( l - F ) *  = 0, 

except for the isothermal field curve which crosses it at a saddle-point singularity 
(Korobeinikov et al. 1961). 

Although the two sets of curves depict the same trend, a shift to the left with 
increming I?, it should be noticed that the curves corresponding to the Rosseland 
radiative diffusion approach the isothermal limit faster and at smaller values of I? tha,n 
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FIUURE 1. Phase planes for a point explosion for the cases of (a) Planck radiative emission and 
(b) Rwseland radiative diffusion. In both cases, conduction ie taken into account with I?, = 0.001 
while I?, and Fa take on values from 0 to Q). The broken line is the integral curve for the iso- 
thermal blast wave. The front moves along the line Po,. All curves with finite values of I' 
approach asymptotically F = 0 at 2 = CQ. 

r 
FIUURE 2. Variation of density and temperature with I' a t  the centre of explosion. Planck 
radiative emission is shown aa solid lines, Rosseland radiative diffusion aa broken lines. rC = 0.001 
for both cases. 
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FIGURE 3. Total heat flux of conduction and radiation for different values of the radiation 
parameter I' for the Planck (a) and Rosseland (b) limit. The I? = 0 c w  corresponds to conduction 
only. 

those of the Planck radiation. They are also steeper than the Planck curves and attain 
smaller values of P for the same values of 2. 

Figure 2 displays the influence of the relative radiation factor r upon the density hi 
and the temperature 81 at the centre for both radiation limits with conduction corre- 
sponding to rC = 0.001. It reveals the same trend mentioned above; namely, that the 
Rosseland radiation limit reaches the isothermal bound at smaller values of I', 
numerically of the order of 1. 

-Reiults obtained for Planck radiative emission are presented in figures 3 (a)-7 (a) 
while those for Rosseland radiative diffusion are displayed in figures 3 (b)-7 (b). The 
transfer of more energy to the front, associated with larger values of r, is reflected in 
the heat-flux profiles depicted in figures 3 (a, b). A more pronounced shift, of larger 
fluxes towards the frontal region, can be observed in the Rosseland case, figure 3 (b), 
in comparison with the Planck case, figure 3 (a). 

Figures 4 and 6 give temperature and density profiles, respectively. As a result of 
large radiation fluxes, the temperature becomes more uniformly distributed throughout 
the field, with the density distribution following suit, but to a lesser extent. The 
effect of heat transfer on velocity is illustrated in figure 6, indicating the creation of a 
larger stagnant sphere around the centre as r increases, extending to 2 = 0.5 in the 
isothermal case. As a consequence of the fact that the increase in density does not 
keep pace with the temperature drop, pressure (figure 7) in the central plateau falls to 
a lower level than in the adiabatic cme. 

Although a more uniform distribution of the gasdynamic profiles is observed in 
these figures for Rosseland radiative diffusion in comparison with Planck radiative 
emission, the two limiting cases nevertheless bear a striking similarity to each ather. 
This can be attributed to the common phenomenon in both, namely the conduction 
heat transfer, since, although rc = 0.001 only, the accompanying set of boundary 
conditions (34) at the centre impose a similar trend on both solutions near the centre. 
To check this conclusion, a solution for the case rC = 0 was obtained for the Planck 
radiative-emission limit and for the general intermediate radiation case. Equations (38) 
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FIGURE 4. Distribution of temperature for the Planck (a) and the 
Roaseland (b)  radiation caws. 
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FIGURE 6. Distribution of density for different values of the rmdiation parameter r for the 
Planck (a) and the Rosselmd ( b )  radiation limits with conduction. 

through (43) are used for this purpose, where for the former cam rR is set equal to 
infinity, I to zero, and (39) is used fo express the variation of the radiation flux in the 
field, where= for the latter case both (38) and (39) are used, with both rp and rR of the 
order of 1.0. 

Since not all the boundary conditions at  2 = 0 are given, it is not possible to start the 
integration there. Thus the integration is carried out from the front using (26) to define 
the values of h, g ,  8 and Q in terms of F,,. However, as seen from the previous  case^, Fn 
depends on the values of rp and rR and is unknown prior to  the integration. This 
makes an iterative shooting technique necessary to find the proper value of Fn, to any 
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FIGURE 6. Profiles of the velocity distribution for the Planck (a) and the Rosmland (a) radiation 
limits. I' = 0 corresponds to the adiabatic bound and I? = 00 to the isothermal bound. 
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FIGURE 7. Profiles of the pressure distribution in point explosion with conduction and 
radiation taken into account for the Planck (a) and the Rosseland (b )  limits. 

desired degree of accuracy, that will lead to the satisfaction of the condition f = 0 a t  
the centre. The more accurate thevalue of P, is, the closer one can approach the centre 
without encountering the saddle-point singularity there. 

In the absence of conduction there is no regularity condition a t  the centre, and Q = 0 
is always satisfied there, which results in a substantial deviation of this solution from 
the cwe rC > 0. This situation is depicted in figures 8-1 3, where the Planck radiative 
emission caae, corresponding to rR = a, for rp = 0,l.O and 2.0 and the intermediate 
case for the same values of rp and rR = 1.0 and 0.1 are compared. Figure 8 shows 
the phase plane for these cases. Clearly the Planck radiation curves for re = 0 
strongly deviate from those of figure 1 (a), where re = 0.001, especially near the front. 
It is interesting to notice that for decreasing rR, that is, increasing absorption effects 
with respect to emission, the curves take on a similar trend as those for the Rosseland 
limit. On the one hand, the increase in P near the front disappears and, on the other, 
the negative slopes of the curves increase a t  larger values of 2. 

- 
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FIGURE 8. Phase plane for the rc = 0 case. Planck radiative emission, corresponding to rB = 00, 
is shown as solid lines. The rE = 1.0 case is presented as broken lines and the rB = 0.1 case as 
dot- lines. 
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FIGURE 9. Distribution of radiation flux in the Planck radiative-emission 
limit and in the intermediate case, both with rc = 0. 

Figure 9 exhibits the variation of the radiation flux inside the field with different 
values of Fp and rR. In  the Planck case, Qr is always a maximum at the front, with 
a sharp decrease as the centre is approached. That can be attributed to the fact that 
up is proportional to h2/82.7, and that h decreases and 8 increases sharply as the centre 
is approached. As the diffusion term in (23) comes into play, absorption causes the 
radiation flux to decrease near the front, while it increases in the interior. At smaller 
values of rR, the profiles resemble more those of figure 4(b) .  Figures lO(a), (b) give 
the temperature and density distributions, respectively, where it is to be noticed that 
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FIQTJRE 10. Temperature profiles (a)  and density profiles (a) for Planck radiation and two inter- 
mediate radiation 0-8, where the radiation flux is expressed in terms of the differential approxi- 
mation. Both I'p and rB are O(1). 
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FIQLJRE 11. Distributions of velocity (a )  and pressure (b)  in point 
explosion with radiation, conduction neglected. 

for the intermediate case 8 approaches infinity and h goes to zero a t  the centre, since 
the condition Qr = 0 is not associated with a condition on 0 or its derivative. Figure 
11 (a) presents the corresponding velocity profiles. Strong cooling in the Planck case 
causes the velocity near the front to drop from its value in the interior and deviate from 
the more usual monotonic increase. Pressure profiles are displayed in figure 11 (b). 

9. Conclusions 
The problem of self-similar non-adiabatic blast waves, where both conduction and 

radiation are allowed to take place, was analysed. In  the general case the problem can 
be reduced to the integration of a system of six coupled nonlinear ordinary differential 
equations. Our study of these equations leads to the following conclusions. 
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(1) Radiation, as expected, tends to produce uniform fields by attenuating the 
temperature gradients. However, all the energy carried by radiation is deposited on 
the front and the bounding shock becomes more and more overdriven. (This is demon- 
strated clearly in the phase planes, figures 1 (a), 1 (b) and 8, where the front moves 
along the line to the left as the radiation effects increase.) 

(2) When conduction is taken into account the distribution of gdynamic para- 
meters in blast waves in the case of Rosseland diffusion radiation is more uniform than 
in the case of Planck emission radiation. With conduction neglected, the Planck 
emission displays, for large radiation parameters, a slight decrease in temperature 
near the front associated with a non-monotonic change in velocity. 

(3) The case of the Rosseland thick radiation yields, in effect, the same results for 
self-similar blast waves as those obtained for thermal conduction (cf. Sedov 1969; 
Korobeinikov et al. 1961) because in both cases the heat flux is identical owing to the 
self-similarity requirements. However, the results for the Planck thin-radiation cam 
are essentially different. This latter c w e  does exhibit similar trends to the Rosseland 
limit when conduction is considered, but not when radiation is the only heat transfer 
mode. 

(4) The general radiation case lies between the two limiting cases for intermediate 
values of the radiation parameters, where taking into account the diffusion-absorption 
term in the differential-approximation form provides the mechanism for the smooth 
transition from the Planck approximation to the Rosseland approximation. 
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